Skip to content

15. Heaps

Top 'K' Elements

Problem 1: Kth Largest Element in an Array (Leetcode:215)

Problem Statement

Given an integer array nums and an integer k, return the kth largest element in the array.

Note that it is the kth largest element in the sorted order, not the kth distinct element.

Can you solve it without sorting?

Example 1:

Input: nums = [3,2,1,5,6,4], k = 2
Output: 5

Example 2:

Input: nums = [3,2,3,1,2,4,5,5,6], k = 4
Output: 4

Constraints:

  • 1 <= k <= nums.length <= 105
  • -104 <= nums[i] <= 104
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 2: K Closest Points to Origin (Leetcode:973)

Problem Statement

Given an array of points where points[i] = [xi, yi] represents a point on the X-Y plane and an integer k, return the k closest points to the origin (0, 0).

The distance between two points on the X-Y plane is the Euclidean distance (i.e., √(x1 - x2)2 + (y1 - y2)2).

You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in).

Example 1:


Input: points = [[1,3],[-2,2]], k = 1
Output: [[-2,2]]
Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest k = 1 points from the origin, so the answer is just [[-2,2]].

Example 2:

Input: points = [[3,3],[5,-1],[-2,4]], k = 2
Output: [[3,3],[-2,4]]
Explanation: The answer [[-2,4],[3,3]] would also be accepted.

Constraints:

  • 1 <= k <= points.length <= 104
  • -104 <= xi, yi <= 104
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 3: Top K Frequent Elements (Leetcode:347)

Problem Statement

Given an integer array nums and an integer k, return the k most frequent elements. You may return the answer in any order.

Example 1:

Input: nums = [1,1,1,2,2,3], k = 2
Output: [1,2]

Example 2:

Input: nums = [1], k = 1
Output: [1]

Constraints:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104
  • k is in the range [1, the number of unique elements in the array].
  • It is guaranteed that the answer is unique.

Follow up: Your algorithm's time complexity must be better than O(n log n), where n is the array's size.

Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 4: Top K Frequent Words (Leetcode:692)

Problem Statement

Given an array of strings words and an integer k, return the k most frequent strings.

Return the answer sorted by the frequency from highest to lowest. Sort the words with the same frequency by their lexicographical order.

Example 1:

Input: words = ["i","love","leetcode","i","love","coding"], k = 2
Output: ["i","love"]
Explanation: "i" and "love" are the two most frequent words.
Note that "i" comes before "love" due to a lower alphabetical order.

Example 2:

Input: words = ["the","day","is","sunny","the","the","the","sunny","is","is"], k = 4
Output: ["the","is","sunny","day"]
Explanation: "the", "is", "sunny" and "day" are the four most frequent words, with the number of occurrence being 4, 3, 2 and 1 respectively.

Constraints:

  • 1 <= words.length <= 500
  • 1 <= words[i].length <= 10
  • words[i] consists of lowercase English letters.
  • k is in the range [1, The number of unique words[i]]

Follow-up: Could you solve it in O(n log(k)) time and O(n) extra space?

Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 5: Sort Characters By Frequency (Leetcode:451)

Problem Statement

Given a string s, sort it in decreasing order based on the frequency of the characters. The frequency of a character is the number of times it appears in the string.

Return the sorted string. If there are multiple answers, return any of them.

Example 1:

Input: s = "tree"
Output: "eert"
Explanation: 'e' appears twice while 'r' and 't' both appear once.
So 'e' must appear before both 'r' and 't'. Therefore "eetr" is also a valid answer.

Example 2:

Input: s = "cccaaa"
Output: "aaaccc"
Explanation: Both 'c' and 'a' appear three times, so both "cccaaa" and "aaaccc" are valid answers.
Note that "cacaca" is incorrect, as the same characters must be together.

Example 3:

Input: s = "Aabb"
Output: "bbAa"
Explanation: "bbaA" is also a valid answer, but "Aabb" is incorrect.
Note that 'A' and 'a' are treated as two different characters.

Constraints:

  • 1 <= s.length <= 5 * 105
  • s consists of uppercase and lowercase English letters and digits.
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 6: Reorganize String (Leetcode:767)

Problem Statement

Given a string s, rearrange the characters of s so that any two adjacent characters are not the same.

Return any possible rearrangement of s or return "" if not possible.

Example 1:

Input: s = "aab"
Output: "aba"

Example 2:

Input: s = "aaab"
Output: ""

Constraints:

  • 1 <= s.length <= 500
  • s consists of lowercase English letters.
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 7: Rearrange String k Distance Apart (Leetcode:358)

Problem Statement
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 8: Minimum Cost to Connect Sticks (Leetcode:1167)

Problem Statement
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 9: Minimum Cost to Hire K Workers (Leetcode:857)

Problem Statement

There are n workers. You are given two integer arrays quality and wage where quality[i] is the quality of the ith worker and wage[i] is the minimum wage expectation for the ith worker.

We want to hire exactly k workers to form a paid group. To hire a group of k workers, we must pay them according to the following rules:

  1. Every worker in the paid group must be paid at least their minimum wage expectation.
  2. In the group, each worker's pay must be directly proportional to their quality. This means if a worker’s quality is double that of another worker in the group, then they must be paid twice as much as the other worker.

Given the integer k, return the least amount of money needed to form a paid group satisfying the above conditions. Answers within 10-5 of the actual answer will be accepted.

Example 1:

Input: quality = [10,20,5], wage = [70,50,30], k = 2
Output: 105.00000
Explanation: We pay 70 to 0th worker and 35 to 2nd worker.

Example 2:

Input: quality = [3,1,10,10,1], wage = [4,8,2,2,7], k = 3
Output: 30.66667
Explanation: We pay 4 to 0th worker, 13.33333 to 2nd and 3rd workers separately.

Constraints:

  • n == quality.length == wage.length
  • 1 <= k <= n <= 104
  • 1 <= quality[i], wage[i] <= 104
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 10: Minimum Number of Refueling Stops (Leetcode:871)

Problem Statement

A car travels from a starting position to a destination which is target miles east of the starting position.

There are gas stations along the way. The gas stations are represented as an array stations where stations[i] = [positioni, fueli] indicates that the ith gas station is positioni miles east of the starting position and has fueli liters of gas.

The car starts with an infinite tank of gas, which initially has startFuel liters of fuel in it. It uses one liter of gas per one mile that it drives. When the car reaches a gas station, it may stop and refuel, transferring all the gas from the station into the car.

Return the minimum number of refueling stops the car must make in order to reach its destination. If it cannot reach the destination, return -1.

Note that if the car reaches a gas station with 0 fuel left, the car can still refuel there. If the car reaches the destination with 0 fuel left, it is still considered to have arrived.

Example 1:

Input: target = 1, startFuel = 1, stations = []
Output: 0
Explanation: We can reach the target without refueling.

Example 2:

Input: target = 100, startFuel = 1, stations = [[10,100]]
Output: -1
Explanation: We can not reach the target (or even the first gas station).

Example 3:

Input: target = 100, startFuel = 10, stations = [[10,60],[20,30],[30,30],[60,40]]
Output: 2
Explanation: We start with 10 liters of fuel.
We drive to position 10, expending 10 liters of fuel. We refuel from 0 liters to 60 liters of gas.
Then, we drive from position 10 to position 60 (expending 50 liters of fuel),
and refuel from 10 liters to 50 liters of gas. We then drive to and reach the target.
We made 2 refueling stops along the way, so we return 2.

Constraints:

  • 1 <= target, startFuel <= 109
  • 0 <= stations.length <= 500
  • 1 <= positioni < positioni+1 < target
  • 1 <= fueli < 109
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 11: Find K Closest Elements (Leetcode:658)

Problem Statement

Given a sorted integer array arr, two integers k and x, return the k closest integers to x in the array. The result should also be sorted in ascending order.

An integer a is closer to x than an integer b if:

  • |a - x| < |b - x|, or
  • |a - x| == |b - x| and a < b

Example 1:

Input: arr = [1,2,3,4,5], k = 4, x = 3
Output: [1,2,3,4]

Example 2:

Input: arr = [1,1,2,3,4,5], k = 4, x = -1
Output: [1,1,2,3]

Constraints:

  • 1 <= k <= arr.length
  • 1 <= arr.length <= 104
  • arr is sorted in ascending order.
  • -104 <= arr[i], x <= 104
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 12: The K Weakest Rows in a Matrix (Leetcode:1337)

Problem Statement

You are given an m x n binary matrix mat of 1's (representing soldiers) and 0's (representing civilians). The soldiers are positioned in front of the civilians. That is, all the 1's will appear to the left of all the 0's in each row.

A row i is weaker than a row j if one of the following is true:

  • The number of soldiers in row i is less than the number of soldiers in row j.
  • Both rows have the same number of soldiers and i < j.

Return the indices of the k weakest rows in the matrix ordered from weakest to strongest.

Example 1:

Input: mat =
[[1,1,0,0,0],
[1,1,1,1,0],
[1,0,0,0,0],
[1,1,0,0,0],
[1,1,1,1,1]],
k = 3
Output: [2,0,3]
Explanation:
The number of soldiers in each row is:
- Row 0: 2
- Row 1: 4
- Row 2: 1
- Row 3: 2
- Row 4: 5
The rows ordered from weakest to strongest are [2,0,3,1,4].

Example 2:

Input: mat =
[[1,0,0,0],
[1,1,1,1],
[1,0,0,0],
[1,0,0,0]],
k = 2
Output: [0,2]
Explanation:
The number of soldiers in each row is:
- Row 0: 1
- Row 1: 4
- Row 2: 1
- Row 3: 1
The rows ordered from weakest to strongest are [0,2,3,1].

Constraints:

  • m == mat.length
  • n == mat[i].length
  • 2 <= n, m <= 100
  • 1 <= k <= m
  • matrix[i][j] is either 0 or 1.
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 13: Last Stone Weight (Leetcode:1046)

Problem Statement

You are given an array of integers stones where stones[i] is the weight of the ith stone.

We are playing a game with the stones. On each turn, we choose the heaviest two stones and smash them together. Suppose the heaviest two stones have weights x and y with x <= y. The result of this smash is:

  • If x == y, both stones are destroyed, and
  • If x != y, the stone of weight x is destroyed, and the stone of weight y has new weight y - x.

At the end of the game, there is at most one stone left.

Return the weight of the last remaining stone. If there are no stones left, return 0.

Example 1:

Input: stones = [2,7,4,1,8,1]
Output: 1
Explanation:
We combine 7 and 8 to get 1 so the array converts to [2,4,1,1,1] then,
we combine 2 and 4 to get 2 so the array converts to [2,1,1,1] then,
we combine 2 and 1 to get 1 so the array converts to [1,1,1] then,
we combine 1 and 1 to get 0 so the array converts to [1] then that's the value of the last stone.

Example 2:

Input: stones = [1]
Output: 1

Constraints:

  • 1 <= stones.length <= 30
  • 1 <= stones[i] <= 1000
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 14: Ugly Number II (Leetcode:264)

Problem Statement

An ugly number is a positive integer whose prime factors are limited to 2, 3, and 5.

Given an integer n, return the nth ugly number.

Example 1:

Input: n = 10
Output: 12
Explanation: [1, 2, 3, 4, 5, 6, 8, 9, 10, 12] is the sequence of the first 10 ugly numbers.

Example 2:

Input: n = 1
Output: 1
Explanation: 1 has no prime factors, therefore all of its prime factors are limited to 2, 3, and 5.

Constraints:

  • 1 <= n <= 1690
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach


Two Heaps

Problem 1: Sliding Window Median (Leetcode:480)

Problem Statement

The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle values.

  • For examples, if arr = [2,3,4], the median is 3.
  • For examples, if arr = [1,2,3,4], the median is (2 + 3) / 2 = 2.5.

You are given an integer array nums and an integer k. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.

Return the median array for each window in the original array. Answers within 10-5 of the actual value will be accepted.

Example 1:

Input: nums = [1,3,-1,-3,5,3,6,7], k = 3
Output: [1.00000,-1.00000,-1.00000,3.00000,5.00000,6.00000]
Explanation:
Window position Median
--------------- -----
[1 3 -1] -3 5 3 6 7 1
1 [3 -1 -3] 5 3 6 7 -1
1 3 [-1 -3 5] 3 6 7 -1
1 3 -1 [-3 5 3] 6 7 3
1 3 -1 -3 [5 3 6] 7 5
1 3 -1 -3 5 [3 6 7] 6

Example 2:

Input: nums = [1,2,3,4,2,3,1,4,2], k = 3
Output: [2.00000,3.00000,3.00000,3.00000,2.00000,3.00000,2.00000]

Constraints:

  • 1 <= k <= nums.length <= 105
  • -231 <= nums[i] <= 231 - 1
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 2: Find Median from Data Stream (Leetcode:295)

Problem Statement

The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value, and the median is the mean of the two middle values.

  • For example, for arr = [2,3,4], the median is 3.
  • For example, for arr = [2,3], the median is (2 + 3) / 2 = 2.5.

Implement the MedianFinder class:

  • MedianFinder() initializes the MedianFinder object.
  • void addNum(int num) adds the integer num from the data stream to the data structure.
  • double findMedian() returns the median of all elements so far. Answers within 10-5 of the actual answer will be accepted.

Example 1:

Input
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
Output
[null, null, null, 1.5, null, 2.0]

Explanation
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0

Constraints:

  • -105 <= num <= 105
  • There will be at least one element in the data structure before calling findMedian.
  • At most 5 * 104 calls will be made to addNum and findMedian.

Follow up:

  • If all integer numbers from the stream are in the range [0, 100], how would you optimize your solution?
  • If 99% of all integer numbers from the stream are in the range [0, 100], how would you optimize your solution?
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 3: IPO / Maximize Capital (Leetcode:502)

Problem Statement

Suppose LeetCode will start its IPO soon. In order to sell a good price of its shares to Venture Capital, LeetCode would like to work on some projects to increase its capital before the IPO. Since it has limited resources, it can only finish at most k distinct projects before the IPO. Help LeetCode design the best way to maximize its total capital after finishing at most k distinct projects.

You are given n projects where the ith project has a pure profit profits[i] and a minimum capital of capital[i] is needed to start it.

Initially, you have w capital. When you finish a project, you will obtain its pure profit and the profit will be added to your total capital.

Pick a list of at most k distinct projects from given projects to maximize your final capital, and return the final maximized capital.

The answer is guaranteed to fit in a 32-bit signed integer.

Example 1:

Input: k = 2, w = 0, profits = [1,2,3], capital = [0,1,1]
Output: 4
Explanation: Since your initial capital is 0, you can only start the project indexed 0.
After finishing it you will obtain profit 1 and your capital becomes 1.
With capital 1, you can either start the project indexed 1 or the project indexed 2.
Since you can choose at most 2 projects, you need to finish the project indexed 2 to get the maximum capital.
Therefore, output the final maximized capital, which is 0 + 1 + 3 = 4.

Example 2:

Input: k = 3, w = 0, profits = [1,2,3], capital = [0,1,2]
Output: 6

Constraints:

  • 1 <= k <= 105
  • 0 <= w <= 109
  • n == profits.length
  • n == capital.length
  • 1 <= n <= 105
  • 0 <= profits[i] <= 104
  • 0 <= capital[i] <= 109
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 4: Kth Largest Element in a Stream (Leetcode:703)

Problem Statement

You are part of a university admissions office and need to keep track of the kth highest test score from applicants in real-time. This helps to determine cut-off marks for interviews and admissions dynamically as new applicants submit their scores.

You are tasked to implement a class which, for a given integer k, maintains a stream of test scores and continuously returns the kth highest test score after a new score has been submitted. More specifically, we are looking for the kth highest score in the sorted list of all scores.

Implement the KthLargest class:

  • KthLargest(int k, int[] nums) Initializes the object with the integer k and the stream of test scores nums.
  • int add(int val) Adds a new test score val to the stream and returns the element representing the kth largest element in the pool of test scores so far.

Example 1:

Input:
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
Output: [null, 4, 5, 5, 8, 8]
Explanation:
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3); // return 4
kthLargest.add(5); // return 5
kthLargest.add(10); // return 5
kthLargest.add(9); // return 8
kthLargest.add(4); // return 8

Example 2:

Input:
["KthLargest", "add", "add", "add", "add"]
[[4, [7, 7, 7, 7, 8, 3]], [2], [10], [9], [9]]
Output: [null, 7, 7, 7, 8]
Explanation:
KthLargest kthLargest = new KthLargest(4, [7, 7, 7, 7, 8, 3]);
kthLargest.add(2); // return 7
kthLargest.add(10); // return 7
kthLargest.add(9); // return 7
kthLargest.add(9); // return 8

Constraints:

  • 0 <= nums.length <= 104
  • 1 <= k <= nums.length + 1
  • -104 <= nums[i] <= 104
  • -104 <= val <= 104
  • At most 104 calls will be made to add.
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach


Scheduling Pattern

Problem 1: Meeting Rooms II (Leetcode:253)

Problem Statement
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 2: Employee Free Time (Leetcode:759)

Problem Statement
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 3: Task Scheduler (Leetcode:621)

Problem Statement

You are given an array of CPU tasks, each labeled with a letter from A to Z, and a number n. Each CPU interval can be idle or allow the completion of one task. Tasks can be completed in any order, but there's a constraint: there has to be a gap of at least n intervals between two tasks with the same label.

Return the minimum number of CPU intervals required to complete all tasks.

Example 1:

Input: tasks = ["A","A","A","B","B","B"], n = 2
Output: 8
Explanation: A possible sequence is: A -> B -> idle -> A -> B -> idle -> A -> B.
After completing task A, you must wait two intervals before doing A again. The same applies to task B. In the 3rd interval, neither A nor B can be done, so you idle. By the 4th interval, you can do A again as 2 intervals have passed.

Example 2:

Input: tasks = ["A","C","A","B","D","B"], n = 1
Output: 6
Explanation: A possible sequence is: A -> B -> C -> D -> A -> B. With a cooling interval of 1, you can repeat a task after just one other task.

Example 3:

Input: tasks = ["A","A","A", "B","B","B"], n = 3
Output: 10
Explanation: A possible sequence is: A -> B -> idle -> idle -> A -> B -> idle -> idle -> A -> B. There are only two types of tasks, A and B, which need to be separated by 3 intervals. This leads to idling twice between repetitions of these tasks.

Constraints:

  • 1 <= tasks.length <= 104
  • tasks[i] is an uppercase English letter.
  • 0 <= n <= 100
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 4: Furthest Building You Can Reach (Leetcode:1642)

Problem Statement

You are given an integer array heights representing the heights of buildings, some bricks, and some ladders.

You start your journey from building 0 and move to the next building by possibly using bricks or ladders.

While moving from building i to building i+1 (0-indexed),

  • If the current building's height is greater than or equal to the next building's height, you do not need a ladder or bricks.
  • If the current building's height is less than the next building's height, you can either use one ladder or (h[i+1] - h[i]) bricks.

Return the furthest building index (0-indexed) you can reach if you use the given ladders and bricks optimally.

Example 1:


Input: heights = [4,2,7,6,9,14,12], bricks = 5, ladders = 1
Output: 4
Explanation: Starting at building 0, you can follow these steps:
- Go to building 1 without using ladders nor bricks since 4 >= 2.
- Go to building 2 using 5 bricks. You must use either bricks or ladders because 2 < 7.
- Go to building 3 without using ladders nor bricks since 7 >= 6.
- Go to building 4 using your only ladder. You must use either bricks or ladders because 6 < 9.
It is impossible to go beyond building 4 because you do not have any more bricks or ladders.

Example 2:

Input: heights = [4,12,2,7,3,18,20,3,19], bricks = 10, ladders = 2
Output: 7

Example 3:

Input: heights = [14,3,19,3], bricks = 17, ladders = 0
Output: 3

Constraints:

  • 1 <= heights.length <= 105
  • 1 <= heights[i] <= 106
  • 0 <= bricks <= 109
  • 0 <= ladders <= heights.length
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach

Problem 5: Course Schedule III (Leetcode:630)

Problem Statement

There are n different online courses numbered from 1 to n. You are given an array courses where courses[i] = [durationi, lastDayi] indicate that the ith course should be taken continuously for durationi days and must be finished before or on lastDayi.

You will start on the 1st day and you cannot take two or more courses simultaneously.

Return the maximum number of courses that you can take.

Example 1:

Input: courses = [[100,200],[200,1300],[1000,1250],[2000,3200]]
Output: 3
Explanation:
There are totally 4 courses, but you can take 3 courses at most:
First, take the 1st course, it costs 100 days so you will finish it on the 100th day, and ready to take the next course on the 101st day.
Second, take the 3rd course, it costs 1000 days so you will finish it on the 1100th day, and ready to take the next course on the 1101st day.
Third, take the 2nd course, it costs 200 days so you will finish it on the 1300th day.
The 4th course cannot be taken now, since you will finish it on the 3300th day, which exceeds the closed date.

Example 2:

Input: courses = [[1,2]]
Output: 1

Example 3:

Input: courses = [[3,2],[4,3]]
Output: 0

Constraints:

  • 1 <= courses.length <= 104
  • 1 <= durationi, lastDayi <= 104
Code and Explaination


Explaination:
This is first approach


Explaination:
This is second approach