19. Tries
Problem 1: Implement Trie (Prefix Tree) (Leetcode:208)
Problem Statement
A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.
Implement the Trie class:
Trie()
Initializes the trie object.void insert(String word)
Inserts the stringword
into the trie.boolean search(String word)
Returnstrue
if the stringword
is in the trie (i.e., was inserted before), andfalse
otherwise.boolean startsWith(String prefix)
Returnstrue
if there is a previously inserted stringword
that has the prefixprefix
, andfalse
otherwise.
Example 1:
Input
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
Output
[null, null, true, false, true, null, true]Explanation
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // return True
trie.search("app"); // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app"); // return True
Constraints:
1 <= word.length, prefix.length <= 2000
word
andprefix
consist only of lowercase English letters.- At most
3 * 104
calls in total will be made toinsert
,search
, andstartsWith
.
Problem 2: Longest Word in Dictionary (Leetcode:720)
Problem Statement
Given an array of strings words
representing an English Dictionary, return the longest word in words
that can be built one character at a time by other words in words
.
If there is more than one possible answer, return the longest word with the smallest lexicographical order. If there is no answer, return the empty string.
Note that the word should be built from left to right with each additional character being added to the end of a previous word.
Example 1:
Input: words = ["w","wo","wor","worl","world"]
Output: "world"
Explanation: The word "world" can be built one character at a time by "w", "wo", "wor", and "worl".
Example 2:
Input: words = ["a","banana","app","appl","ap","apply","apple"]
Output: "apple"
Explanation: Both "apply" and "apple" can be built from other words in the dictionary. However, "apple" is lexicographically smaller than "apply".
Constraints:
1 <= words.length <= 1000
1 <= words[i].length <= 30
words[i]
consists of lowercase English letters.
Problem 3: Map Sum Pairs (Leetcode:677)
Problem Statement
Design a map that allows you to do the following:
- Maps a string key to a given value.
- Returns the sum of the values that have a key with a prefix equal to a given string.
Implement the MapSum
class:
MapSum()
Initializes theMapSum
object.void insert(String key, int val)
Inserts thekey-val
pair into the map. If thekey
already existed, the originalkey-value
pair will be overridden to the new one.int sum(string prefix)
Returns the sum of all the pairs' value whosekey
starts with theprefix
.
Example 1:
Input
["MapSum", "insert", "sum", "insert", "sum"]
[[], ["apple", 3], ["ap"], ["app", 2], ["ap"]]
Output
[null, null, 3, null, 5]Explanation
MapSum mapSum = new MapSum();
mapSum.insert("apple", 3);
mapSum.sum("ap"); // return 3 (apple = 3)
mapSum.insert("app", 2);
mapSum.sum("ap"); // return 5 (apple + app = 3 + 2 = 5)
Constraints:
1 <= key.length, prefix.length <= 50
key
andprefix
consist of only lowercase English letters.1 <= val <= 1000
- At most
50
calls will be made toinsert
andsum
.
Problem 4: Word Search II (Leetcode:212)
Problem Statement
Given an m x n
board
of characters and a list of strings words
, return all words on the board.
Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.
Example 1:
Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
Output: ["eat","oath"]
Example 2:
Input: board = [["a","b"],["c","d"]], words = ["abcb"]
Output: []
Constraints:
m == board.length
n == board[i].length
1 <= m, n <= 12
board[i][j]
is a lowercase English letter.1 <= words.length <= 3 * 104
1 <= words[i].length <= 10
words[i]
consists of lowercase English letters.- All the strings of
words
are unique.
Problem 5: Replace Words (Leetcode:648)
Problem Statement
In English, we have a concept called root, which can be followed by some other word to form another longer word - let's call this word derivative. For example, when the root "help"
is followed by the word "ful"
, we can form a derivative "helpful"
.
Given a dictionary
consisting of many roots and a sentence
consisting of words separated by spaces, replace all the derivatives in the sentence with the root forming it. If a derivative can be replaced by more than one root, replace it with the root that has the shortest length.
Return the sentence
after the replacement.
Example 1:
Input: dictionary = ["cat","bat","rat"], sentence = "the cattle was rattled by the battery"
Output: "the cat was rat by the bat"
Example 2:
Input: dictionary = ["a","b","c"], sentence = "aadsfasf absbs bbab cadsfafs"
Output: "a a b c"
Constraints:
1 <= dictionary.length <= 1000
1 <= dictionary[i].length <= 100
dictionary[i]
consists of only lower-case letters.1 <= sentence.length <= 106
sentence
consists of only lower-case letters and spaces.- The number of words in
sentence
is in the range[1, 1000]
- The length of each word in
sentence
is in the range[1, 1000]
- Every two consecutive words in
sentence
will be separated by exactly one space.sentence
does not have leading or trailing spaces.
Problem 6: Add and Search Word (Leetcode:211)
Problem Statement
Design a data structure that supports adding new words and finding if a string matches any previously added string.
Implement the WordDictionary
class:
WordDictionary()
Initializes the object.void addWord(word)
Addsword
to the data structure, it can be matched later.bool search(word)
Returnstrue
if there is any string in the data structure that matchesword
orfalse
otherwise.word
may contain dots'.'
where dots can be matched with any letter.
Example:
Input
["WordDictionary","addWord","addWord","addWord","search","search","search","search"]
[[],["bad"],["dad"],["mad"],["pad"],["bad"],[".ad"],["b.."]]
Output
[null,null,null,null,false,true,true,true]
Explanation
WordDictionary wordDictionary = new WordDictionary();
wordDictionary.addWord("bad");
wordDictionary.addWord("dad");
wordDictionary.addWord("mad");
wordDictionary.search("pad"); // return False
wordDictionary.search("bad"); // return True
wordDictionary.search(".ad"); // return True
wordDictionary.search("b.."); // return True
Constraints:
1 <= word.length <= 25
word
inaddWord
consists of lowercase English letters.word
insearch
consist of'.'
or lowercase English letters.- There will be at most
2
dots inword
forsearch
queries.- At most
104
calls will be made toaddWord
andsearch
.
Problem 7: Word Break (Leetcode:139)
Problem Statement
Given a string s
and a dictionary of strings wordDict
, return true
if s
can be segmented into a space-separated sequence of one or more dictionary words.
Note that the same word in the dictionary may be reused multiple times in the segmentation.
Example 1:
Input: s = "leetcode", wordDict = ["leet","code"]
Output: true
Explanation: Return true because "leetcode" can be segmented as "leet code".
Example 2:
Input: s = "applepenapple", wordDict = ["apple","pen"]
Output: true
Explanation: Return true because "applepenapple" can be segmented as "apple pen apple".
Note that you are allowed to reuse a dictionary word.
Example 3:
Input: s = "catsandog", wordDict = ["cats","dog","sand","and","cat"]
Output: false
Constraints:
1 <= s.length <= 300
1 <= wordDict.length <= 1000
1 <= wordDict[i].length <= 20
s
andwordDict[i]
consist of only lowercase English letters.- All the strings of
wordDict
are unique.
Problem 8: Maximum XOR of Two Numbers in an Array (Leetcode:421)
Problem Statement
Given an integer array nums
, return the maximum result of nums[i] XOR nums[j]
, where 0 <= i <= j < n
.
Example 1:
Input: nums = [3,10,5,25,2,8]
Output: 28
Explanation: The maximum result is 5 XOR 25 = 28.
Example 2:
Input: nums = [14,70,53,83,49,91,36,80,92,51,66,70]
Output: 127
Constraints:
1 <= nums.length <= 2 * 105
0 <= nums[i] <= 231 - 1
Problem 9: Search Suggestions System (Leetcode:1268)
Problem Statement
You are given an array of strings products
and a string searchWord
.
Design a system that suggests at most three product names from products
after each character of searchWord
is typed. Suggested products should have common prefix with searchWord
. If there are more than three products with a common prefix return the three lexicographically minimums products.
Return a list of lists of the suggested products after each character of searchWord
is typed.
Example 1:
Input: products = ["mobile","mouse","moneypot","monitor","mousepad"], searchWord = "mouse"
Output: [["mobile","moneypot","monitor"],["mobile","moneypot","monitor"],["mouse","mousepad"],["mouse","mousepad"],["mouse","mousepad"]]
Explanation: products sorted lexicographically = ["mobile","moneypot","monitor","mouse","mousepad"].
After typing m and mo all products match and we show user ["mobile","moneypot","monitor"].
After typing mou, mous and mouse the system suggests ["mouse","mousepad"].
Example 2:
Input: products = ["havana"], searchWord = "havana"
Output: [["havana"],["havana"],["havana"],["havana"],["havana"],["havana"]]
Explanation: The only word "havana" will be always suggested while typing the search word.
Constraints:
1 <= products.length <= 1000
1 <= products[i].length <= 3000
1 <= sum(products[i].length) <= 2 * 104
- All the strings of
products
are unique.products[i]
consists of lowercase English letters.1 <= searchWord.length <= 1000
searchWord
consists of lowercase English letters.
Problem 10: Count Prefixes of a Given String (Leetcode:2255)
Problem Statement
You are given a string array words
and a string s
, where words[i]
and s
comprise only of lowercase English letters.
Return the number of strings in words
that are a prefix of s
.
A prefix of a string is a substring that occurs at the beginning of the string. A substring is a contiguous sequence of characters within a string.
Example 1:
Input: words = ["a","b","c","ab","bc","abc"], s = "abc"
Output: 3
Explanation:
The strings in words which are a prefix of s = "abc" are:
"a", "ab", and "abc".
Thus the number of strings in words which are a prefix of s is 3.
Example 2:
Input: words = ["a","a"], s = "aa"
Output: 2
Explanation:
Both of the strings are a prefix of s.
Note that the same string can occur multiple times in words, and it should be counted each time.
Constraints:
1 <= words.length <= 1000
1 <= words[i].length, s.length <= 10
words[i]
ands
consist of lowercase English letters only.
Problem 11: K-th Smallest in Lexicographical Order (Leetcode:440)
Problem Statement
Given two integers n
and k
, return the kth
lexicographically smallest integer in the range [1, n]
.
Example 1:
Input: n = 13, k = 2
Output: 10
Explanation: The lexicographical order is [1, 10, 11, 12, 13, 2, 3, 4, 5, 6, 7, 8, 9], so the second smallest number is 10.
Example 2:
Input: n = 1, k = 1
Output: 1
Constraints:
1 <= k <= n <= 109
Problem 12: Palindrome Pairs (Leetcode:336)
Problem Statement
You are given a 0-indexed array of unique strings words
.
A palindrome pair is a pair of integers (i, j)
such that:
0 <= i, j < words.length
,i != j
, andwords[i] + words[j]
(the concatenation of the two strings) is a palindrome.
Return an array of all the palindrome pairs of words
.
You must write an algorithm with O(sum of words[i].length)
runtime complexity.
Example 1:
Input: words = ["abcd","dcba","lls","s","sssll"]
Output: [[0,1],[1,0],[3,2],[2,4]]
Explanation: The palindromes are ["abcddcba","dcbaabcd","slls","llssssll"]
Example 2:
Input: words = ["bat","tab","cat"]
Output: [[0,1],[1,0]]
Explanation: The palindromes are ["battab","tabbat"]
Example 3:
Input: words = ["a",""]
Output: [[0,1],[1,0]]
Explanation: The palindromes are ["a","a"]
Constraints:
1 <= words.length <= 5000
0 <= words[i].length <= 300
words[i]
consists of lowercase English letters.